3.3.39 \(\int \frac {\text {arctanh}(a x)^2}{x^2 (1-a^2 x^2)} \, dx\) [239]

3.3.39.1 Optimal result
3.3.39.2 Mathematica [A] (verified)
3.3.39.3 Rubi [A] (verified)
3.3.39.4 Maple [C] (warning: unable to verify)
3.3.39.5 Fricas [F]
3.3.39.6 Sympy [F]
3.3.39.7 Maxima [B] (verification not implemented)
3.3.39.8 Giac [F]
3.3.39.9 Mupad [F(-1)]

3.3.39.1 Optimal result

Integrand size = 22, antiderivative size = 66 \[ \int \frac {\text {arctanh}(a x)^2}{x^2 \left (1-a^2 x^2\right )} \, dx=a \text {arctanh}(a x)^2-\frac {\text {arctanh}(a x)^2}{x}+\frac {1}{3} a \text {arctanh}(a x)^3+2 a \text {arctanh}(a x) \log \left (2-\frac {2}{1+a x}\right )-a \operatorname {PolyLog}\left (2,-1+\frac {2}{1+a x}\right ) \]

output
a*arctanh(a*x)^2-arctanh(a*x)^2/x+1/3*a*arctanh(a*x)^3+2*a*arctanh(a*x)*ln 
(2-2/(a*x+1))-a*polylog(2,-1+2/(a*x+1))
 
3.3.39.2 Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.92 \[ \int \frac {\text {arctanh}(a x)^2}{x^2 \left (1-a^2 x^2\right )} \, dx=-a \left (-\frac {1}{3} \text {arctanh}(a x) \left (-\frac {3 \text {arctanh}(a x)}{a x}+\text {arctanh}(a x) (3+\text {arctanh}(a x))+6 \log \left (1-e^{-2 \text {arctanh}(a x)}\right )\right )+\operatorname {PolyLog}\left (2,e^{-2 \text {arctanh}(a x)}\right )\right ) \]

input
Integrate[ArcTanh[a*x]^2/(x^2*(1 - a^2*x^2)),x]
 
output
-(a*(-1/3*(ArcTanh[a*x]*((-3*ArcTanh[a*x])/(a*x) + ArcTanh[a*x]*(3 + ArcTa 
nh[a*x]) + 6*Log[1 - E^(-2*ArcTanh[a*x])])) + PolyLog[2, E^(-2*ArcTanh[a*x 
])]))
 
3.3.39.3 Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.08, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {6544, 6452, 6510, 6550, 6494, 2897}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {arctanh}(a x)^2}{x^2 \left (1-a^2 x^2\right )} \, dx\)

\(\Big \downarrow \) 6544

\(\displaystyle a^2 \int \frac {\text {arctanh}(a x)^2}{1-a^2 x^2}dx+\int \frac {\text {arctanh}(a x)^2}{x^2}dx\)

\(\Big \downarrow \) 6452

\(\displaystyle a^2 \int \frac {\text {arctanh}(a x)^2}{1-a^2 x^2}dx+2 a \int \frac {\text {arctanh}(a x)}{x \left (1-a^2 x^2\right )}dx-\frac {\text {arctanh}(a x)^2}{x}\)

\(\Big \downarrow \) 6510

\(\displaystyle 2 a \int \frac {\text {arctanh}(a x)}{x \left (1-a^2 x^2\right )}dx+\frac {1}{3} a \text {arctanh}(a x)^3-\frac {\text {arctanh}(a x)^2}{x}\)

\(\Big \downarrow \) 6550

\(\displaystyle 2 a \left (\int \frac {\text {arctanh}(a x)}{x (a x+1)}dx+\frac {1}{2} \text {arctanh}(a x)^2\right )+\frac {1}{3} a \text {arctanh}(a x)^3-\frac {\text {arctanh}(a x)^2}{x}\)

\(\Big \downarrow \) 6494

\(\displaystyle 2 a \left (-a \int \frac {\log \left (2-\frac {2}{a x+1}\right )}{1-a^2 x^2}dx+\frac {1}{2} \text {arctanh}(a x)^2+\text {arctanh}(a x) \log \left (2-\frac {2}{a x+1}\right )\right )+\frac {1}{3} a \text {arctanh}(a x)^3-\frac {\text {arctanh}(a x)^2}{x}\)

\(\Big \downarrow \) 2897

\(\displaystyle 2 a \left (\frac {1}{2} \text {arctanh}(a x)^2+\text {arctanh}(a x) \log \left (2-\frac {2}{a x+1}\right )-\frac {1}{2} \operatorname {PolyLog}\left (2,\frac {2}{a x+1}-1\right )\right )+\frac {1}{3} a \text {arctanh}(a x)^3-\frac {\text {arctanh}(a x)^2}{x}\)

input
Int[ArcTanh[a*x]^2/(x^2*(1 - a^2*x^2)),x]
 
output
-(ArcTanh[a*x]^2/x) + (a*ArcTanh[a*x]^3)/3 + 2*a*(ArcTanh[a*x]^2/2 + ArcTa 
nh[a*x]*Log[2 - 2/(1 + a*x)] - PolyLog[2, -1 + 2/(1 + a*x)]/2)
 

3.3.39.3.1 Defintions of rubi rules used

rule 2897
Int[Log[u_]*(Pq_)^(m_.), x_Symbol] :> With[{C = FullSimplify[Pq^m*((1 - u)/ 
D[u, x])]}, Simp[C*PolyLog[2, 1 - u], x] /; FreeQ[C, x]] /; IntegerQ[m] && 
PolyQ[Pq, x] && RationalFunctionQ[u, x] && LeQ[RationalFunctionExponents[u, 
 x][[2]], Expon[Pq, x]]
 

rule 6452
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] : 
> Simp[x^(m + 1)*((a + b*ArcTanh[c*x^n])^p/(m + 1)), x] - Simp[b*c*n*(p/(m 
+ 1))   Int[x^(m + n)*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x 
], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1 
] && IntegerQ[m])) && NeQ[m, -1]
 

rule 6494
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x 
_Symbol] :> Simp[(a + b*ArcTanh[c*x])^p*(Log[2 - 2/(1 + e*(x/d))]/d), x] - 
Simp[b*c*(p/d)   Int[(a + b*ArcTanh[c*x])^(p - 1)*(Log[2 - 2/(1 + e*(x/d))] 
/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c 
^2*d^2 - e^2, 0]
 

rule 6510
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symb 
ol] :> Simp[(a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b 
, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]
 

rule 6544
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + ( 
e_.)*(x_)^2), x_Symbol] :> Simp[1/d   Int[(f*x)^m*(a + b*ArcTanh[c*x])^p, x 
], x] - Simp[e/(d*f^2)   Int[(f*x)^(m + 2)*((a + b*ArcTanh[c*x])^p/(d + e*x 
^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1]
 

rule 6550
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^2)), 
 x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(p + 1)/(b*d*(p + 1)), x] + Simp[1/ 
d   Int[(a + b*ArcTanh[c*x])^p/(x*(1 + c*x)), x], x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0]
 
3.3.39.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.54 (sec) , antiderivative size = 4380, normalized size of antiderivative = 66.36

method result size
derivativedivides \(\text {Expression too large to display}\) \(4380\)
default \(\text {Expression too large to display}\) \(4380\)
parts \(\text {Expression too large to display}\) \(4383\)

input
int(arctanh(a*x)^2/x^2/(-a^2*x^2+1),x,method=_RETURNVERBOSE)
 
output
a*(-1/2*I*Pi*dilog((a*x+1)/(-a^2*x^2+1)^(1/2))-arctanh(a*x)^2/a/x-1/4*I*Pi 
*csgn(I*(a*x+1)^2/(a^2*x^2-1)/(1-(a*x+1)^2/(a^2*x^2-1)))*csgn(I/(1-(a*x+1) 
^2/(a^2*x^2-1)))*csgn(I*(a*x+1)^2/(a^2*x^2-1))*dilog((a*x+1)/(-a^2*x^2+1)^ 
(1/2))-1/4*I*Pi*csgn(I*(a*x+1)^2/(a^2*x^2-1)/(1-(a*x+1)^2/(a^2*x^2-1)))*cs 
gn(I/(1-(a*x+1)^2/(a^2*x^2-1)))*csgn(I*(a*x+1)^2/(a^2*x^2-1))*arctanh(a*x) 
*ln(1-(a*x+1)/(-a^2*x^2+1)^(1/2))-1/4*I*Pi*csgn(I*(a*x+1)^2/(a^2*x^2-1)/(1 
-(a*x+1)^2/(a^2*x^2-1)))^3*arctanh(a*x)^2-1/4*I*Pi*csgn(I*(a*x+1)^2/(a^2*x 
^2-1))^3*arctanh(a*x)^2+1/2*I*Pi*csgn(I/(1-(a*x+1)^2/(a^2*x^2-1)))^3*arcta 
nh(a*x)^2-1/2*I*Pi*csgn(I/(1-(a*x+1)^2/(a^2*x^2-1)))^2*arctanh(a*x)^2+1/2* 
I*Pi*csgn(I/(1-(a*x+1)^2/(a^2*x^2-1)))^2*arctanh(a*x)*ln(1-(a*x+1)/(-a^2*x 
^2+1)^(1/2))-1/4*I*Pi*csgn(I*(a*x+1)^2/(a^2*x^2-1)/(1-(a*x+1)^2/(a^2*x^2-1 
)))^2*csgn(I/(1-(a*x+1)^2/(a^2*x^2-1)))*dilog(1+(a*x+1)/(-a^2*x^2+1)^(1/2) 
)+polylog(2,-(a*x+1)/(-a^2*x^2+1)^(1/2))+polylog(2,(a*x+1)/(-a^2*x^2+1)^(1 
/2))+1/3*arctanh(a*x)^3-arctanh(a*x)^2+1/4*I*Pi*csgn(I*(a*x+1)^2/(a^2*x^2- 
1)/(1-(a*x+1)^2/(a^2*x^2-1)))^3*polylog(2,(a*x+1)/(-a^2*x^2+1)^(1/2))+1/4* 
I*Pi*csgn(I*(a*x+1)^2/(a^2*x^2-1)/(1-(a*x+1)^2/(a^2*x^2-1)))^3*polylog(2,- 
(a*x+1)/(-a^2*x^2+1)^(1/2))+1/4*I*Pi*csgn(I*(a*x+1)^2/(a^2*x^2-1)/(1-(a*x+ 
1)^2/(a^2*x^2-1)))^3*dilog((a*x+1)/(-a^2*x^2+1)^(1/2))-1/4*I*Pi*csgn(I*(a* 
x+1)^2/(a^2*x^2-1)/(1-(a*x+1)^2/(a^2*x^2-1)))^3*dilog(1+(a*x+1)/(-a^2*x^2+ 
1)^(1/2))-1/2*I*Pi*arctanh(a*x)*ln(1-(a*x+1)/(-a^2*x^2+1)^(1/2))+1/2*I*...
 
3.3.39.5 Fricas [F]

\[ \int \frac {\text {arctanh}(a x)^2}{x^2 \left (1-a^2 x^2\right )} \, dx=\int { -\frac {\operatorname {artanh}\left (a x\right )^{2}}{{\left (a^{2} x^{2} - 1\right )} x^{2}} \,d x } \]

input
integrate(arctanh(a*x)^2/x^2/(-a^2*x^2+1),x, algorithm="fricas")
 
output
integral(-arctanh(a*x)^2/(a^2*x^4 - x^2), x)
 
3.3.39.6 Sympy [F]

\[ \int \frac {\text {arctanh}(a x)^2}{x^2 \left (1-a^2 x^2\right )} \, dx=- \int \frac {\operatorname {atanh}^{2}{\left (a x \right )}}{a^{2} x^{4} - x^{2}}\, dx \]

input
integrate(atanh(a*x)**2/x**2/(-a**2*x**2+1),x)
 
output
-Integral(atanh(a*x)**2/(a**2*x**4 - x**2), x)
 
3.3.39.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 237 vs. \(2 (63) = 126\).

Time = 0.19 (sec) , antiderivative size = 237, normalized size of antiderivative = 3.59 \[ \int \frac {\text {arctanh}(a x)^2}{x^2 \left (1-a^2 x^2\right )} \, dx=-\frac {1}{24} \, a^{2} {\left (\frac {3 \, {\left (\log \left (a x - 1\right ) - 2\right )} \log \left (a x + 1\right )^{2} - \log \left (a x + 1\right )^{3} + \log \left (a x - 1\right )^{3} - 3 \, {\left (\log \left (a x - 1\right )^{2} - 4 \, \log \left (a x - 1\right )\right )} \log \left (a x + 1\right ) + 6 \, \log \left (a x - 1\right )^{2}}{a} - \frac {24 \, {\left (\log \left (a x - 1\right ) \log \left (\frac {1}{2} \, a x + \frac {1}{2}\right ) + {\rm Li}_2\left (-\frac {1}{2} \, a x + \frac {1}{2}\right )\right )}}{a} + \frac {24 \, {\left (\log \left (a x + 1\right ) \log \left (x\right ) + {\rm Li}_2\left (-a x\right )\right )}}{a} - \frac {24 \, {\left (\log \left (-a x + 1\right ) \log \left (x\right ) + {\rm Li}_2\left (a x\right )\right )}}{a}\right )} + \frac {1}{4} \, {\left (2 \, {\left (\log \left (a x - 1\right ) - 2\right )} \log \left (a x + 1\right ) - \log \left (a x + 1\right )^{2} - \log \left (a x - 1\right )^{2} - 4 \, \log \left (a x - 1\right ) + 8 \, \log \left (x\right )\right )} a \operatorname {artanh}\left (a x\right ) + \frac {1}{2} \, {\left (a \log \left (a x + 1\right ) - a \log \left (a x - 1\right ) - \frac {2}{x}\right )} \operatorname {artanh}\left (a x\right )^{2} \]

input
integrate(arctanh(a*x)^2/x^2/(-a^2*x^2+1),x, algorithm="maxima")
 
output
-1/24*a^2*((3*(log(a*x - 1) - 2)*log(a*x + 1)^2 - log(a*x + 1)^3 + log(a*x 
 - 1)^3 - 3*(log(a*x - 1)^2 - 4*log(a*x - 1))*log(a*x + 1) + 6*log(a*x - 1 
)^2)/a - 24*(log(a*x - 1)*log(1/2*a*x + 1/2) + dilog(-1/2*a*x + 1/2))/a + 
24*(log(a*x + 1)*log(x) + dilog(-a*x))/a - 24*(log(-a*x + 1)*log(x) + dilo 
g(a*x))/a) + 1/4*(2*(log(a*x - 1) - 2)*log(a*x + 1) - log(a*x + 1)^2 - log 
(a*x - 1)^2 - 4*log(a*x - 1) + 8*log(x))*a*arctanh(a*x) + 1/2*(a*log(a*x + 
 1) - a*log(a*x - 1) - 2/x)*arctanh(a*x)^2
 
3.3.39.8 Giac [F]

\[ \int \frac {\text {arctanh}(a x)^2}{x^2 \left (1-a^2 x^2\right )} \, dx=\int { -\frac {\operatorname {artanh}\left (a x\right )^{2}}{{\left (a^{2} x^{2} - 1\right )} x^{2}} \,d x } \]

input
integrate(arctanh(a*x)^2/x^2/(-a^2*x^2+1),x, algorithm="giac")
 
output
integrate(-arctanh(a*x)^2/((a^2*x^2 - 1)*x^2), x)
 
3.3.39.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\text {arctanh}(a x)^2}{x^2 \left (1-a^2 x^2\right )} \, dx=-\int \frac {{\mathrm {atanh}\left (a\,x\right )}^2}{x^2\,\left (a^2\,x^2-1\right )} \,d x \]

input
int(-atanh(a*x)^2/(x^2*(a^2*x^2 - 1)),x)
 
output
-int(atanh(a*x)^2/(x^2*(a^2*x^2 - 1)), x)